On the coerciveness of some merit functions for complementarity problems over symmetric cones
نویسندگان
چکیده
منابع مشابه
A Continuation Method for Nonlinear Complementarity Problems over Symmetric Cones
In this paper, we introduce a new P -type condition for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P -type condition represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically.
متن کاملOn the Coerciveness of Merit Functions for the Second-Order Cone Complementarity Problem
The Second-Order Cone Complementarity Problem (SOCCP) is a wide class of problems, which includes the Nonlinear Complementarity Problem (NCP) and the Second-Order Cone Programming Problem (SOCP). Recently, Fukushima, Luo and Tseng extended some merit functions and their smoothing functions for NCP to SOCCP. Moreover, they derived computable formulas for the Jacobians of the smoothing functions ...
متن کاملUniform nonsingularity and complementarity problems over symmetric cones
Abstract. We study the uniform nonsingularity property recently proposed by the authors and present its applications to nonlinear complementarity problems over a symmetric cone. In particular, by addressing theoretical issues such as the existence of Newton directions, the boundedness of iterates and the nonsingularity of B-subdifferentials, we show that the non-interior continuation method pro...
متن کاملSome Global Uniqueness and Solvability Results for Linear Complementarity Problems Over Symmetric Cones
This article deals with linear complementarity problems over symmetric cones. Our objective here is to characterize global uniqueness and solvability properties for linear transformations that leave the symmetric cone invariant. Specifically, we show that, for algebra automorphisms on the Lorentz space Ln and for quadratic representations on any Euclidean Jordan algebra, global uniqueness, glob...
متن کاملGrowth behavior of two classes of merit functions for symmetric cone complementarity problems
In the solution methods of the symmetric cone complementarity problem (SCCP), the squared norm of a complementarity function serves naturally as a merit function for the problem itself or the equivalent system of equations reformulation. In this paper, we study the growth behavior of two classes of such merit functions, which are induced by the smooth EP complementarity functions and the smooth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2007
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2007.03.003